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A nonpertubative approach to quantum gravity usingprecanonicalfield quantization
originating from the covariant De Donder–Weyl Hamiltonian formulation, which treats
space and time variables on an equal footing, is presented. A generally covariant
“multitemporal” generalized Schr¨odinger equation on the finite dimensional space of
metric and space–time variables is obtained. An important ingredient of the formula-
tion is the “bootstrap condition” which introduces a classical space–time geometry as an
approximate concept emerging as the quantum average self-consistent with the underly-
ing quantum dynamics. This ensures the independence of the theory from an arbitrarily
fixed background. The prospects and unsolved problems of precanonical quantization
of gravity are outlined.

1. INTRODUCTION

The goal of contemporary efforts in developing the quantum theory of gravity
(for a recent review see, e.g., Isham, 1993, 1997; Rovelli, 1998) is to complete
the synthesis of quantum theory and general relativity. This could be achieved
either by developing a new “quantum–general-relativistic” framework in physics
or by incorporating general relativity into a unifying quantum theory of all in-
teractions. Two aspects of classical general relativity, which is at the same time
the theory of space–time and the theory of the gravitational interaction, are being
stressed then. Accordingly, quantization of gravity can be viewed either pragmati-
cally, as a construction of the quantum field theory of gravity (see, e.g., Donoghue,
1994, 1996; Reuter, 1998, 2000) or, more conceptually, as a construction of the
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quantum theory of space–time. Both aspects are of course intimately related to each
other.

By its very nature the program ofquantizationof gravity is an attempt to
apply the principles of quantum theory, as we understand them at the present, to
general relativity. In fact, it is (necessarily) understood even in a more narrow
sense of imposing the presently known form of quantization rules, which proved
to be successful for other fields evolving on a fixed space–time background, to
general relativity with its diffeomorphism covariance and a dynamical space–
time geometry. It is usually assumed that the currently practiced form of quantum
(field) theory is applicable to general relativity without substantial modifications
(cf. “generalized quantum mechanics” of Hartle (1994, 1995), which is constructed
to be better suited to the context of quantum gravity).

However, it is well-known that the existing attempts to quantize gravity are
confronted by both the problematic mathematical meaning of the involved con-
structions and the conceptual questions originating in difficulties of reconciling
the fundamental principles of quantum theory with those of general relativity (see,
e.g., Isham, 1993, 1997, for a review and further references). In particular, a distinct
role of the time dimension in the probabilistic interpretation of quantum theory
and in the formulation of quantum evolution laws seems to be contradistinguished
from the equal rights status of space–time dimensions in the theory of relativity.
The quintessential manifestation of this type of difficulties is known, somewhat
loosely, as “the problem of time” (see, e.g., Isham, 1993, 1997; Kuchaˇr, 1992;
Unruh, 1993, for a review). Besides, the commonly adopted procedure ofcanon-
ical quantizationis preceded by the Hamiltonian formulation which requires a
singling out of a time parameter and seems to be too tied to the classically inspired
idea of evolution in time from a given Cauchy data. Technically, this procedure
implies a global hyperbolicity of space–time, which seems to be a rather unnatural
topological restriction for the expected quantum fluctuating “space–time foam” of
quantum gravity.

The difficulties mentioned earlier are likely to indicate that the applicability
of the conventional Hamiltonian methods in quantum theory of gravity can be
rather limited. However, those difficulties could be partially overcome, or at least
seen from another perspective, if we would have in our disposal a quantization
procedure in field theory not so sensibly depending on space–time decomposition,
that is, on the singling out of a time parameter.

One could argue that the path integral approach already embodies the idea.
However, the particular path integral ansatz of Hawking’s Euclidean quantum grav-
ity (Hawking, 1979) is in fact merely a symbolic solution to the Wheeler–DeWitt
equation the derivation of whichis substantially based on space–time decompo-
sition. Moreover, the interpretation of this ansatz refers to spatial 3-geometries
(in four dimensions). Besides, the usual path integral expression of the generating
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functional in field theory incorporates only thetime orderedGreen functions;
hence, an implicit reference to a distinct time parameter.

In fact, what we need instead is a version of canonical quantization without
a distinct role of time dimension and, therefore, one that is independent of the
representation of fields as infinite dimensional systems evolving in time from the
initial Cauchy data given on a space-like hypersurface. Clearly, such a “timeless”
procedure of quantization, if exists, should have to be based on an analogue of
Hamiltonian formalism in which space and time dimensions are treated on an
equal footing.

Fortunately, although this seems to be not commonly known in theoretical
physics, the Hamiltonian-like formulations of the field equations, which could be
appropriate for a “timeless” version of canonical formalism, have been known in
the calculus of variations already at least since the 30s. In the simplest version of
those formulations, the so-called De Donder–Weyl (DW) theory (De Donder, 1935;
Dickey, 1991, 1994; Kastrup, 1983; Rund, 1966; Weyl, 1935) the Euler–Lagrange
field equations assume the following form ofDW Hamiltonian equations

∂µya = ∂H

∂pµa
, ∂µpµa = −

∂H

∂ya
, (1.1)

whereya denote field variables,pµa := ∂L/∂(∂µya) are what we callpolymomenta,
H := ∂µya pµa − L is a function of (ya, pµa , xν) called theDW Hamiltonian func-
tion, andL = L(ya, ∂µya, xν) is a Lagrangian density.

Obviously, this form of the field equations can be viewed as a “multitem-
poral” or multiparameter generalization of Hamilton’s canonical equations from
mechanics to field theory in which the analogue of the configuration space is a finite
dimensional space of field and space–time variables (ya, xν) and the analogue of
the extended phase space is a finite dimensional (extended)polymomentum phase
spaceof the variables (ya, pµa , xν). In (1.1), fields are described essentially as a sort
of multiparameter generalized (DW) Hamiltonian systems rather than as infinite
dimensional mechanical systems, as in the standard Hamiltonian formalism. In
doing so, the DW Hamiltonian functionH , which thus far does not appear to have
any evident physical interpretation, in a sense controls the space–timevariations
of fields, as specified by Eqs. (1.1), rather than their timeevolution. The latter,
however, is implicit in (1.1) in the case of hyperbolic field equations for which the
Cauchy problem can be posed.

An intriguing feature of the framework under consideration is that in spite
of the finite dimensionality of the polymomentum phase space it is capable to
embrace the dynamics of fields, which usually are viewed as infinite dimensional
Hamiltonian systems. From the equivalence of (1.1) to the Euler–Lagrange field
equations, which is only restricted by the regularity of the DW Legendre transform
ya
ν → pνa, L → H , it is obvious that no field degrees of freedom are lost when
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transforming to the DW formulation. In fact, instead of the standard notion of a
degree of freedom per space point, which originates in the conventional Hamil-
tonian treatment, in the present multiparameter Hamiltonian description it is the
(finite) number of the components of the field, which is important. The label of
the conventional field degree of freedom, the space coordinatex, goes over to the
space-time multiparameterxµ = (x, t); that is the usual “infinite-dimensionality”
of field theory in the present formulation is equivalently accounted for in the form
of “multiparametricity.” The same also applies to field quantization based on DW
theory, which is described later.

Note that there exists an analogue of the Hamilton–Jacobi theory corre-
sponding to the DW Hamiltonian equations (1.1). The DW Hamilton–Jacobi
equation (De Donder, 1935; Kastryp, 1983; Rund, 1966; von Rieth, 1984; Weyl,
1935) is formulated forn(n = the number of space–time dimensions) functions
Sµ = Sµ(ya, xµ):

∂µSµ + H
(
xµ, ya, pµa = ∂Sµ/∂ya

) = 0. (1.2)

It naturally leads to the question as to which formulation of quantum field theory
could yield this field theoretic Hamilton–Jacobi equation in the classical limit. The
scheme of field quantization that is outlined in section 2.2 is a possible answer to
the question and underlies the present approach to quantization of gravity.

It should be mentioned that the DW formulation is a particular case of
more generalLepagean(Lepage, 1941, 1942) Hamiltonian-like theories for fields
(known in the calculus of variations of multiple integrals (Giaquinta, 1995)), which
differ by the definitions of polymomenta and the analogues of Hamilton’s canoni-
cal functionH (both following essentially from different choices of the Lepagean
equivalents of the Poincar´e–Cartan form; for further details and references see
(Dedecker, 1977; De Donder, 1935; Gotay, 1991; Kastrup, 1983; Krupka, 1983,
1986, 1987; Rund, 1966; Weyl, 1935). All theories of this type treat space and
time variables on an equal footing and are finite-dimensional in the sense that the
corresponding analogues of the configuration and the polymomentum phase space
are finite-dimensional. They all reduce to the Hamiltonian formalism of mechanics
atn = 1.

Moreover, all these formulations are, in a sense, intermediate between the
Lagrangian formulation and the canonical Hamiltonian formulation: they still keep
space–time variables indistinguishable but already possess the essential features
of the Hamiltonian-like description, being based on the first-order form of the field
equations and a Legendre transform. Besides, there are intimate relations, not fully
studied as yet, between the structures of the canonical Hamiltonian formalism and
the structures of the Lepagean formulations (Gotay, 1991a,b; Gotayet al., 1998;
Gotay,et al., in preparation; Helein and Kouneiher, 2000; Kijowski and Tulczyjew,
1979;Śniatycki, 1984) that point to the latter as a natural intermediate step when
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formulating the field theories canonically proceeding from the Lagrangian level.
For this reason, henceforth we refer to the finite dimensional covariant Hamiltonia-
like formulations based on different Lepagean theories as “precanonical.” Further
justification of the term can be found in section 4. The term “precanonical quanti-
zation” to be used throughout means, in most general sense, a quantization based
on the Hamiltonian-like structures of a Lepagean theory. In this paper, however,
we deal only with a particular Lepagean theory: the DW formulation and the cor-
responding quantization. Thus the term precanonical quantization will be used
rather in this limited sense.

Let us note also that precanonical formulations typically have different reg-
ularity conditions than the canonical Hamiltonian formalism. For example, the
DW formulation (1.1) requires that det‖∂2L/∂µya∂ν yb‖ 6= 0. This condition is
obviously different from the regularity condition of the canonical formalism:
det‖∂2L/∂t ya∂t yb‖ 6= 0. As a result, the “constraints,” understood as obstacles to
the corresponding generalized Legendre transforms∂µya→ pµa , have a quite dif-
ferent structure from that of the standard canonical formalism. In fact, the singular
theories from the point of view of the canonical formalism can be regular from the
precanonical point of view (as e.g., the Nambu–Goto string (Kanatchikov, 1998a))
or vice versa (as e.g., the Dirac spinor field (von Rieth, 1984)). This opens a yet
unexplored possibility of avoiding the constraints analysis when quantizing within
the precanonical framework by choosing for a given theory an appropriate non-
singular Lepagean Legendre transformation. In fact, this possibility is exploited
later, in section 3.2, when quantizing general relativity without any mention of
constraints.

The idea of using the DW Hamiltonian formulation for field quantization dates
back to Born (1934) and Weyl (1934). However it has not received much attention
since then (see, however, Good, 1994, 1995; G¨unther, 1987a; Navarro, 1995, 2000;
Sardanashvily, 1994). Obviously, one of the reasons is that quantization needs more
than just an existence of a Hamiltonian-like formulation of the field equations:
additional structures, such as the Poisson bracket (for canonical or deformation
quantization), the symplectic structure (for geometric quantization), and a Poisson
bracket formulation of the field equations (in order to formulate or postulate the
quantum dynamical law) are necessary.

Unfortunately, in spite of a number of earlier attempts (Edelen, 1961; Good,
1954; Hermann, 1970; Marsdenet al., 1986; Tapia, 1988) and the progress in un-
derstanding the relevant aspects of the geometry of classical field theory, such as
those related to the notion of the (Hamilton–)Poincar´e–Cartan (or multisymplectic)
form (Cariñenaet al., 1991; Goldschmidt and Sternberg, 1973; Gotayet al., 1998)
and Günther’s polysymplectic form (G¨unther, 1987b), a construction which could
be suitable as a starting point of quantization has been lacking. It is only recently
that a proper Poisson bracket operation, which is defined on differential forms
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representing the dynamical variables and leads to a Poisson–Gerstenhaber algerba
structure, has been found within the DW theory by Kanatchikov (1993, 1995,
1997a, 1998a) (see also Helein and Kouneiher, 2000; Forger and R¨omer, in press;
Paufler, 2001a,b; for recent generalizations). This progress has been accompanied
and followed by further developments in “multisymplectic” generalizations of the
symplectic geometry aimed at applications in field theory and the calculus of vari-
ations (Betounes, 1984, 1987; Cantrijnet al., 1996, 1999; Cartin, 1997; de L´eon
et al., 1995, 1996, 2000; Edelen and Snyman, 1986; Fulpet al., 1996; Giachetta
et al., 1997; Lawson, 1997; Olver, 1993) and in other geometric aspects of the
Lagrangian and Hamiltonian formalism in field theory (Echeverr´ıa-Enrı́quez and
Muñoz-Lecanda, 1992; Echeverr´ıa-Enrı́quezet al., 1996, 1997, 1999; Hrabak,
1999a,b; Ibortet al., 1998, 2000; Kanatchikov, 2000a), which to a great extent are
been so far basically ignored by the wider mathematical physics community.

The elements of field quantization based on the aforementioned Poisson–
Gerstenhaber brackets on differential forms have been discussed by Kanatchikov
(1995, 1998b,c, 1999a) and will be briefly summarized in section 2.2. Unfortu-
nately, many fundamental aspects of the correspondingprecanonicalapproach to
field quantization, as we suggest to call it, so far remain poorly understood (see
Kanatchikov, 1998b,c and section 4 for a discusion) and require a further analysis.
This particularly concerns an interplay with the standard formalism and notions
of quantum field theory (see Kanatchikov, 2000b for a recent progress). Never-
theless, the already elaborated part of the theory points to intriguing features and
as yet unexplored potential that, hopefully, are capable to make the precanonical
approach a useful complement to the presently available concepts and techniques
of quantum field theory.

The purpose of this paper is to apply the precanonical approach to field
quantization, as we understand it now, to the problem of quantization of general
relativity (see Kanatchikov, 1998d, 1999b, 2000c, in press; for earlier reports). We
hope that this application can shed new light on the problems of quantum gravity
and can be useful also for better understanding of the precanonical approach itself.

We proceed as follows: first, in section 2, we summarize basic elements of
precanonical formalism and quantization based on the DW theory and then, in
section 3, apply this framework to general relativity. Discussion and concluding
remarks are presented in section 4.

2. PRECANONICAL FORMALISM AND QUANTIZATION
BASED ON DW THEORY

In this section we briefly summarize basic elements of precanonical formalism
based on the DW theory and then outline the corresponding precanonical field
quantization scheme.
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2.1. Classical Theory

The mathematical structures underlying the DW form of the field equations,
Eq. (1.1), have been studied in our previous papers (Kanatchikov, 1997a,b, 1998a)
to which we refer for more details.

The analogue of the Poisson bracket in the DW formulation is deduced from
the object, called thepolysymplectic form, which in local coordinates can be written
in the form5

Ä = −dya ∧ dpµa ∧ ωµ
and is viewed as a field theoretic generalization of the symplectic form within the
DW formulation. Note that if6,6: (ya = ya(x), t = t), denotes the Cauchy data
surface in the covariant configuration space (ya, xµ), the standard symplectic form
in field theory,ωs, can be expressed as the integral over6 of the restriction ofÄ
to6, Ä|6 (Gotay, 1991a,b; Gotayet al., 1998; Gotay, in press;́Sniatycki, 1984)
that is,

ωS =
∫
6

Ä|6.

The polysymplectic formÄ associates horizontalp-forms
p
F ,

p
F := 1

p!
Fµ1...µp(z

M ) dxµ1...µp(p = 0, 1,. . . , n), with (n− p)-multivectors (or more gen-

eral algebraic operators of degree−(n− p) on the exterior algebra),
n−p
X , by the

relation:
n−p
X yÄ = d

p
F , (2.1)

whereydenotes the contraction of a multivector with a form. Then the graded Pois-
son brackets of horizontal forms representing the dynamical variables is
given by {[ p

F1,
q
F2
]}

:= (−)n−p
n−p
X 1yd

q
F2. (2.2)

Hence the bracket of ap-form with aq-form is a form of degree (p+ q − n+ 1),
wheren is the space–time dimension. Note that, as a consequence, the subspace
of forms of degree (n− 1) is closed with respect to the bracket, as well as the
subspace of forms of degree 0 and (n− 1).

5 Strictly speaking this object is understood as the equivalence class of forms modulo the forms of the
horizontal degreen, see (Kanatchikov, 1998a) for more details. Henceforth we denoteω := dx1

∧ · · · ∧ dxn, ωµ := ∂µyω = (−1)µ−1dx1 ∧ · · · ̂dxµ · · · ∧ dxn, dxµ1...µp := dxµ1 ∧ · · · ∧ dxµp ,
and{zM } := {ya, pµa , xµ}.
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This construction leads to a hierarchy of algebraic structures that are graded
generalizations of the Poisson algebra in mechanics (Kanatchikov, 1997a,b, 1998a).
Specifically, on a small subspace of the so-called Hamiltonian forms (i.e., those
which can be mapped by relation (2.1) to multivectors) one obtain the structure of
a so-called Gerstenhaber algebra (Gerstenhaber, 1963).

Let us recall, that the latter is a tripleG = (A, •, {[ , ]}), whereA is a graded
commutative associative algebra with the product operation• and{[ , ]} is a graded
Lie bracket which fulfils the graded Leibniz rule with respect to the product•, with
the degree of an elementa of A with respect to the bracket operation,bdeg(a),
and the degree ofa with respect to the product•, pdeg(a), related asbdeg(a) =
pdeg(a)+ 1. In our case the Lie bracket is the bracket operation defined in (2.2)
which is also closely related to the Schouten–Nijenhuis bracket of multivector
fields (the latter is related to our bracket in the similar way as the Lie bracket
of vector fields is related to the Poisson bracket). Correspondingly, the graded
commutative multiplication• is what we call the “co-exterior product”

F • G := ∗−1(∗F ∧ ∗G)

(* is the Hodge duality operator), with respect to which the space of Hamiltonian
forms is stable (Kanatchikov, 1997a,b; Paufler, 2001a,b).

Note that more general (“non-Hamiltonian”) forms give rise to a noncom-
mutative (in the sense of Loday’s “Leibniz algebras” (Loday, 1993)) higher-order
(in the sense of a higher-order analogue of the graded Leibniz rule replacing the
standard Leibniz rule in the definition) generalization of a Gerstenhaber algebra
(Kanatchikov, 1997a,b).

The bracket defined in (2.2) enables us to identify the pairs of “precanonically
conjugate” variables and to represent the DW Hamiltonian equations in (general-
ized) Poisson bracket formulation. In fact, the appropriate notion of precanonically
conjugate variables in the present context is suggested by considering the brack-
ets of horizontal forms of the kindyadxµ1 ∧ . . . ∧ dxµp and pµa ∂µy ∂µ1y . . . ∂µqyω, with p ≥ q. In particular, in the Lie subalgebra of Hamiltonian forms of
degree 0 and (n− 1), the nonvanishing “precanonical” brackets take the form
(Kanatchikov, 1998a) {[

pµaωµ, yb
]} = δb

a,{[
pµaωµ, ybων

]} = δb
aων ,{[

pµa , ybων
]} = δb

aδ
µ
ν . (2.3)

This brackets obviously reduce to the canonical Poisson bracket in mechanics,
{pa, qb} = δb

a, at n = 1. Hence, the pairs of variables entering the brackets (2.2)
and (2.3) can be viewed as precanonically conjugate with respect to the graded
Poisson bracket (2.2). Note that the brackets (2.3) do not involve any dependence on
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space and time variables. Therefore, they can be viewed as “equal-point” brackets,
as opposite to the usual “equal-time” Poisson brackets in field theory.

By considering the brackets of precanonical variables entering (2.3) withH
or Hω we can write the DW Hamiltonian field equations (1.1) in Poisson bracket
formulation: for example,

d
(
yaωµ

) = {[Hω, yaωµ
]} = ∂H

∂pµa
ω,

d
(
pµaωµ

) = {[Hω, pµaωµ
]} = ∂H

∂ya
ω, (2.4)

whered is the total exterior differential such thatdy = ∂µy(x)dxµ. The DW
Hamiltonian equations written in the form (2.4) point to the fact that the types of
the space–time variations, which are controlled byH , are related to the operation
of the exterior differentiation. This generalizes, to the present formulation of field
theory, the familiar statement in the analytical mechanics that Hamilton’s canonical
function generates the time evolution. Note that this observation largerly under-
lies our hypothesis (2.6) regarding the form of a generalized Schr¨odinger equa-
tion within the precanonical quantization approach (Kanatchikov, 1995, 1998b,
1999a).

2.2. Precanonical Quantization

Quantization of the Gerstenhaber algebraG or its previously mentioned gen-
eralizations would be a difficult mathematical problem. One may even doubt that
the current notions of quantization or deformation are general enough to treat the
problem (Flato, 1997). This is due to the fact thatbdeg(a) 6= pdeg(a), for a ∈ G.
It is only recently that a progress has been made along the lines of geometric
quantization of the Poisson–Gerstenhaber brackets (2.2) (Kanatchikov, 2000d, in
preparation a), which suggests that the difficulty can be solved by admitting the
operators to be nonhomogeneous in degree, at least on the level of prequantization.

Fortunately, in physics there is usually no need to quantize the whole Poisson
algebra. It is even known to be impossible, in the sense of Dirac canonical quan-
tization, as it follows from the Groenewold–van Hove “no-go” theorem (Emch,
1984; Gotay, 1998a, 1998b). In fact, quantization of a small Heisenberg subalgebra
of the canonical brackets often suffices.

Therefore, it seems reasonable, at least as the first step, to quantize a small
subalgebra of graded Poisson brackets that resembles the Heisenberg subalgebra of
canonical variables. A natural candidate is the subalgebra of precanonical brackets
in the Lie subalgebra of Hamiltonian forms of degree 0 and (n− 1), Eqs. (2.3).
In fact, the scheme of field quantization discussed by Kanatchikov (1995, 1998b,
1999a) is essentially based on quantization of this small subalgebra by the Dirac
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correspondence rule: [Â, B̂] = i h{[ Â, B]}. It leads to the following realization of
operators corresponding to the quantities involved in (2.3):̂pµaωµ = i h∂/∂ya,

p̂νa = −i hκγ ν ∂/∂ya,

ω̂ν = −κ−1γν , (2.5)

whereγ µ are the imaginary units of the Clifford algebra of the space–time mani-
fold and the parameterκ of the dimension (length)−(n−1) is required by the dimen-
sional consistency of (2.5). An identification ofκ with the ultraviolet cutoff or a
fundamental length scale quantity was discussed by Kanatchikov (1998b,c). The
realization (2.5) is essentially inspired by the relation between the Clifford alge-
bra and the endomorphisms of the exterior algebra (Chevalley, 1997). A crucial
assumption underlying the proof that the operators in (2.5) fulfill the commu-
tators following from (2.3) is that the composition law of operators implies the
symmetrized product ofγ -matrices.

The realization (2.5) indicates that quantization of DW formulation, viewed
as a multiparameter generalization of the standard Hamiltonian formulation with a
single time parameter, results in a generalization of the quantum theoretic formal-
ism in which (i) the hypercomplex (Clifford) algebra of the underlying space–time
manifold replaces the algebra of the complex numbers (i.e., the Clifford algebra of
(0+ 1)-dimensional “space–time”) in quantum mechanics, and (ii)n space–time
variables are treated on equal footing and generalize the one dimensional time
parameter. In doing so the quantum mechanics is reproduced as a special case
corresponding ton = 1.

This philosophy leads to the following (covariant, “multitemporal,” hyper-
complex) generalization of the Schr¨odinger equation to the precanonical frame-
work (Kanatchikov, 1998b, 1998c, 1999a)

i hκγ µ∂µ9 = Ĥ9, (2.6)

whereĤ is the operator corresponding to the DW Hamiltonian function, the con-
stantκ appears again on dimensional grounds, and9 = 9(ya, xµ) is the wave
function over the covariant configuration space of field and space–time variables.

Equation (2.6) gives rise to the conservation law

∂µ

∫
dy9̄γ µ9 = 0 (2.7)

providedĤ is Hermitean with respect to the scalar product〈9,8〉 = ∫ dy9̄8,
which is also used for calculating the expectation values of operators:

〈Ô〉(x) :=
∫

dy9̄ Ô9. (2.8)
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The main argument in favor of a generalized Schr¨odinger equation (2.6) is
that it satisfies at least two important aspects of the correspondence principle
(Kanatchikov, 1998c, 1999a):

(i) it leads, at least in the simplest case of scalar fields, to the DW canonical
Eqs. (1.1) for the mean values of the appropriate operators (the Ehrenfest
theorem), for example,

∂µ
〈
p̂µa
〉 = −〈(∂H/∂ya)op〉,

∂µ
〈(

yaωµ
)op〉 = 〈(∂H/∂pµaωµ

)op〉
, (2.9)

where (F)op denotes the operator corresponding to the variableF , and
(ii) it reduces to the DW Hamilton–Jacobi equation (1.2) (with some addi-

tional conditions) in the classical limit.

Moreover, it was shown recently that Eq. (2.6) allows us to derive the standard
functional differential Schr¨odinger equation, once a suitable physically motivated
ansatz relating the Schr¨odinger wave functional and the wave function in (2.6) is
constructed (Kanatchikov, 2000b).

Some details on the application of the present precanonical quantization
scheme to the case of scalar fields can be found in (Kanatchikov, 1998c, 1999a,
2000b). It should be noted that a capability of Eq. (2.6) to reproduce the field equa-
tions in the classical limit, that is, an infinite dimensional Hamiltonian system in the
conventional sense, implies that though the generalized Schr¨odinger equation (2.6)
is partial differential and is formulated in terms of a finite dimensional analogue
of the configuration space, no field degrees of freedom are lost in this description.
Similarly to the classical level, the customary “infinite-dimensionality” goes over
into a “multiparametricity.” Further details on the interplay between precanonical
and canonical field quantization have been discussed recently in (Kanatchikov,
2000b).

3. PRECANONICAL QUANTIZATION OF GENERAL RELATIVITY

In this section we first outline a curved space–time generalization of the pre-
canonical quantization scheme presented in section 2.2 and then discuss its further
application to quantization of general relativity. The required DW Hamiltonian for-
mulation of general relativity is discussed in section 3.2.1. The rest of section 3.2
is devoted to the derivation of a diffemorphism covariant Dirac-like wave equa-
tion for quantum general relativity. This equation is argued to include a “bootstrap
condition” that introduces an averaged self-consistent classical geometry involved
in the Dirac-like wave equation ensuring, in this sense, the independence of the
formulation from the choice of an arbitrary background.
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3.1. Curved Space–Time Generalization

To apply the precanonical framework to general relativity we first need to
extend it to curved space–time with the metricgµν(x). The extension of the gen-
eralized Schr¨odinger equation (2.6) to curved space-time is similar to that of the
Dirac equation, that is,

i hκγ µ(x)∇µ9 = Ĥ9, (3.1)

where Ĥ is an operator form of the DW Hamiltonian function and∇µ is the
covariant derivative,∇µ := ∂µ + θµ(x). We introducedx-dependentγ -matrices
which fulfill

γµ(x)γν(x)+ γν(x)γµ(x) = 2gµν(x) (3.2)

and can be expressed with the aid of vielbein fieldseA
µ (x), such that

gµν(x) = eA
µ (x)eB

ν (x)ηAB, (3.3)

and the (pseudo-)Euclidian tangent space Dirac matricesγ A, γ Aγ B + γ Bγ A :=
2ηAB:

γ µ(x) := eµA(x)γ A.

If 9 is a spinor wave function then∇µ is the spinor covariant derivative:
∇µ = ∂µ + θµ, where

θµ = 1

4
θABµγ

AB, γ AB := 1

2
(γ Aγ B − γ Bγ A)

denotes the spin connection with the components given by the usual formula

θ A
Bµ = eA

α eνB0
α
µν − eνB∂µeA

ν . (3.4)

For example, interacting scalar fieldsφa on a curved background are described
by the Lagrangian density

L = √g

{
1

2
∂µφ

a∂µφa −U (φa)− ξRφ2

}
,

whereg := |det(gµν)|. This gives rise to the following expressions of polymo-
menta and the DW Hamiltonian density

pµa := ∂L
∂(∂µφa)

= √g∂µφa,
√

gH = 1

2
√

g
pµa pa

µ +
√

g{U (φ)+ ξRφ2}

for which the corresponding operators can be found to take the form

p̂µa = −i hκ
√

gγ µ
∂

∂φa
,
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Ĥ = −h2κ2

2

∂2

∂φa∂φa
+U (φ)+ ξRφ2. (3.5)

3.2. Precanonical Approach to Quantum General Relativity

In the context of general relativity, the field variables are the metricgαβ
(or the vielbeineµA) components. Hence, according to the precanonical scheme,
the wave function is a function of space–time and metric (or vielbein) variables,
that is,9 = 9(xµ, gαβ) (or 9 = 9(xµ, eµA)). To formulate an analogue of the
Schrödinger equation for this wave function we needγ -matrices that fulfill

γ µγ ν + γ νγ µ = 2gµν (3.6)

and are related to the (pseudo-)Euclidianγ -matricesγ A by the vielbein compo-
nents:γ µ := eµAγ

A, with gµν =: eµAeνBη
AB. Note that, as opposite to the theory on

curved background, the variableseµA, γ µ, andgµν do not carry any dependence on
space–time variablesx; they are instead viewed as the fibre coordinates in the cor-
responding bundles over the space–time. The corresponding fieldseµA(x), γ µ(x),
and gµν(x) exist only as classical notions and represent the sections in these
bundles.

Now, modelled after (3.1), the following (symbolic form of the) generalized
Schrödinger equation for the wave function of quantized gravity can be put forward

i hκê∇/9 = Ĥ9, (3.7)

whereĤ := êH is the operator form of the DW Hamiltonian density of gravity, an
explicit form of which is to be constructed,e := |det(eA

µ )|, and∇/̂ denotes the quan-
tized Dirac operator in the sense that the corresponding connection coefficients
are replaced by appropriate differential operators (cf., e.g., Eqs. (3.15), (3.16),
and (3.21)). Note also, that in the context of quantum gravity it seems to be very
natural to identify the parameterκ in (3.7) with the Planck scale quantity, that is,
κ ∼ `−(n−1)

Planck .
If the wave function in (3.7) is spinor then the covariant derivative oper-

ator ∇̂µ contains the spin connection, which on the classical level involves the
term with the space–time derivatives of vielbeins (cf. Eq. (3.4)), which cannot
be expressed in terms of the quantities of the metric formulation. Consequently,
the spinor nature of Eq. (3.7) seems to necessitate the use of the vielbein for-
mulation of general relativity. However, no suitable DW formulation of general
relativity in vielbein variables is available so far (for a related discussion see also
Espositoet al., 1995; Stornaiolo and Esposito, 1997). The main problem is that
the Lagrangian in vielbein formulation depends on vielbeins (4× 4 components
in n = 4 dimensions) and the spin connection (4× 6 components), which in-
volves only the antisymmetrised space–time derivatives of vielbeins. Hence, the
space–time derivatives of vielbeins (4× 4× 4 components) cannot be expressed
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in the desired DW Hamiltonian form∂µea
ν = ∂H/∂πνµa (cf. Eq. (1.1)) for any

definition of H and polymomentaπνµa because the latter will be constrained to
be antisymmetric in indicesµ andν. The similar problem is encountered in DW
formulation of electrodynamics (Kanatchikov, 1998a) due to the irregularity of
DW Legendge transform, which is a consequence of the presence of only the an-
tisymmetrised space–time derivatives of four-potentials in the Lagrangian. The
problem, however, can be avoided if one starts from a proper gauge fixed action
(Kanatchikov, in preparation) (note, that this step can be interpreted also as a choice
of another Lepagean equivalent of the Lagrangian). In fact, what we need here is a
precanonical analog of the analysis of irregular (in the sense of DW formulation)
Lagrangians and the corresponding quantization. Unfortunately, this part of the
theory remains so far to a great extent undeveloped. For this reason the subsequent
consideration will be based on the metric formulation which does not suffer from
these problems because the Lagrangian depends on the Christoffel symbols (4×
10 components) and thus enables us to express the first derivatives of the metric
(4× 10 components) in DW form (cf. section 3.2.1).

As we shall see, the metric formulation also enables us to discuss the basic
ingredients of precanonical quantization of gravity. In fact, one can argue that the
additional degrees of freedom of the vielbein gravity, as compared with the metric
gravity, that is those related to the local orientations of vielbeins, are not physical:
they have to be gauged away by a coordinate gauge condition which has to be
imposed in the end of the quantization procedure (cf. Eq. (3.24)). This makes the
analysis based on the metric formulation even more justified from the physical
point of view.

3.2.1. DW Formulation of the Einstein Equations

A suitable DW-like formulation of general relativity in metric variables was
presented earlier by Hoˇrava (1991) and Krupka and Stˇepánkova (1983). In this
formulation the field variables are chosen to be the metric density components
hαβ := √ggαβ and the polymomenta,Qα

βγ , are found to be represented by the
following combination of the Christoffel symbols

Qα
βγ := 1

8πG

(
δα(β0

δ
γ )δ − 0αβγ

)
. (3.8)

Respectively, the DW Hamiltonian densityH := √gH assumes the form

H
(
hαβ , Qα

βγ

)
:= 8πGhαγ

(
Qδ
αβQβ

γ δ +
1

1− n
Qβ

αβQδ
γ δ

)
+ (n− 2)3

√
g (3.9)

which is essentially the truncated Lagrangian density of general relativity (with
the opposite sign of the cosmological term) written in terms of variableshαβ and
Qα
βγ .
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Using these variables the Einstein field equations are formulated in DW
Hamiltonian form as follows

∂αhβγ = ∂H / ∂Qα
βγ , (3.10)

∂aQα
βγ = −∂H/∂hβγ , (3.11)

where Eq. (3.10) is equivalent to the standard expression of the Christoffel symbols
in terms of the metric and Eq. (3.11) yields the vacuum Einstein equations in terms
of the Christoffel symbols.

The present DW formulation originally was obtained by Hoˇrava (1991) and
Krupka andS̃těpánkova (1983), using the theory of Lepagean equivalents. How-
ever, it can be derived also by straightforwardly applying the transformations
leading to Eqs. (1.1) to the Einstein truncated Lagrangian density:

LE = 1

16πG
hµν

(
0λµσ0

σ
νλ − 0σµν0λσλ

)
.

3.2.2. Naive Precanonical Quantization

Now, let us formally follow the curved space–time version of precanonical
quantization scheme and apply it to the previously mentioned DW formulation of
general relativity. This leads to the following operator form of polymomentaQα

βγ

Q̂
α

βγ = −i hκγ α
{√

g
∂

∂hβγ

}
ord

(3.12)

which is given up to an ordering ambiguity in the expression inside the curly
brackets{. . .}ord. By substituting this expression to (3.9) and performing a formal
calculation using the assumption of the “standard” ordering (that the differential
operators are all collected to the right) and relation (3.6) for curvedγ -matrices we
obtain the operator form of the DW Hamiltonian density, also up to an ordering
ambiguity:

Ĥ = −8πGh2κ2 n− 2

n− 1

{√
ghαγ hβδ

∂

∂hαβ
∂

∂hγ δ

}
ord

+ (n− 2)3
√

g, (3.13)

where
√

g can be obviously expressed in terms of our field variableshαβ .
However, it should be pointed out that this procedure of the construction

of operators is rather of heuristic and formal nature. In fact, according to (3.8)
classical polymomentaQα

βγ transform as the connection coefficients while the
operator associated with them in (3.12) is a tensor. Moreover, the classical DW
Hamiltonian density (3.9) is an affine scalar density, while the operator constructed
in (3.13) is a diffeomorphism scalar density. Therefore, we must clarify whether
or not, or in which sense, this procedure is meaningful.
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In the next section we shall argue how expressions (3.12) and (3.13) are valid
locally, that is, in a vicinity of a point, while the information as to how to go from
one space-time point to another, that is the structure of the connection, is given by
the Schr¨odinger equation. This is very much along the lines of the precanonical
approach to field quantization, which can be viewed also as the “ultra-Schr¨odinger”
picture, in which the space–time dependence is totally transfered from operators
to the wave function.

3.2.3. Covariant Schr̈odinger Equation for Quantized Gravity
and the “Bootstrap Condition”

In order to understand the meaning of the specific realization of operators in
section 3.2.2, let us remind first that the prescriptions of canonical quantization
are actually applicable only in a specific coordinate system and in principle re-
quire a subsequent “covariantization.” Second, let us note that the consistency of
the expressions (3.12) and (3.13) with the classical transformation laws could be
achieved by adding an auxiliary term in (3.12), which transforms as a connection.
Then, the expression of the Christoffel symbols in terms of the polymomentaQα

βγ

(cf. Eq. (3.8))

0αβγ = 8πG

(
2

n− 1
δα(βQδ

γ )δ − Qα
βγ

)
(3.14)

would yield an operator form of the Christoffel symbols

0̂αβγ = −8π iGhκ

{√
g

(
2

n− 1
δα(βγ

σ ∂

∂hγ )σ
− γ α ∂

∂hβγ

)}
ord

+ 0̃αβγ (x), (3.15)

where the auxiliary (reference) connection0̃αβγ (x) is introduced. However, it is
obvious that no arbitrary quantitity likẽ0αβγ (x) should be present in a desired
background independent formulation.

On the other hand, we can notice that our precanonically quantized operators
arise essentially from the “equal-point” commutation relations (cf. Eqs. (2.3)) and
thus can be viewed as locally defined “in a point.” In an infinitesimal vicinity of
a point x we always can chose a local reference system in which the auxiliary
connection0̃αβγ (x) vanishes. Then one can assume that this is the reference system
in which the expression (3.12) for operatorsQ̂

α

βγ is valid. However, when consis-
tently implemented, this idea requires a subsequent “patching together” procedure
in order to specify how and in which sense the operators determined in different
points are related to each other. This procedure is likely to lead to extra terms in our
generalized Schr¨odinger equation (3.7) because of the connection involved in the
“patching together.” In fact, in accord with the essense of the “ultra-Schr¨odinger”
picture adopted here, when all the space–time dependence is transfered from
operators to the wave function, it is natural to assume that the information about



P1: VENDOR/FOM/LOV/FNV/GEE/GCQ/GDP

International Journal of Theoretical Physics [ijtp] PP108-299770 March 31, 2001 9:54 Style file version Nov. 19th, 1999

Precanonical Quantum Gravity 1137

the “patching together,” that is, about passing from one space–time point into an-
other, is actually controlled by the wave function and the Schr¨odinger equation it
fulfils.

This idea can be implemented as follows. At first we formulate a generalized
Schrödinger equation (3.7) in the local coordinate system in the vicinity of a point
x in which the reference connection vanishes:0̃αβγ|x = 0, and then covariantize
the resulting equation in the simplest way. The first step leads to a locally valid
equation (cf. (3.7))

i hκ
√

gγ µ(∂µ + θ̂µ)9 = Ĥ9, (3.16)

where the local operator form of the coefficients of the spin connectionθ̂µ (in the
vicinity of x), as it follows from (3.4) and (3.15), is given by

θ̂
A
Bµ = −8π iGhκ

{
eA
α eνB
√

g

(
2

n− 1
δα(µγ

σ ∂

∂hν)σ
− γ α ∂

∂hµν

)}
ord

+ θ̃ A
Bµ

∣∣
x

=:
(
θ A
Bµ

)op+ θ̃ A
Bµ

∣∣
x
, (3.17)

where (θ A
Bµ

)op denotes the first (ordering dependent) operator term andθ̃ A
Bµ
| x de-

notes a reference spin connection which ensures the correct transformation law
of (3.17). Note that in generalθ̃

A
Bµ |x 6= 0 even if0̃αβγ |x = 0.

Now, in order to formulate a generally covariant version of (3.16) we notice
that vielbeins do not enter the DW Hamiltonian formulation of general relativity
on which the quantization in question is based. Therefore, within the present
consideration they may (and can only) be treated as nonquantized classicalx-
dependent quantities:eµA = ẽµA(x). On the other hand, the bilinear combination of
vielbeinseµAeνBη

AB is the metric tensorgµν which is a variable quantized (in the
“ultra-Schrödinger” picture used here) as anx-independent quantity.

Both aspects can be reconciled in agreement with the correspondence prin-
ciple by requiring the bilinear combination of vielbeins to be consistent with the
mean value of the metric,〈gµν〉(x), that is,

ẽµA(x)ẽνB(x)ηAB = 〈gµν〉 (x), (3.18)

where the latter is given by averaging over the space of the metric components by
means of the wave function9(gµν , xµ) (cf. Eq. (2.8)):

〈gµν〉(x) =
∫

[dgαβ ]9̄(g, x)gµν9(g, x), (3.19)
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with the invariant integration measure given by (cf. Misner, 1957)6

[dgαβ ] = √g(n+1)
∏
α≤β

dgαβ. (3.20)

Hence, the vielbein field̃eµA(x) is set to be determined by the consistency with the
averaged metric field. In doing so the local orientation of vielbeins is still arbitrary
but it can be fixed by a proper coordinate (gauge) condition on an average vielbein
field ẽµA(x). A natural idea is to use the averaged vielbein fieldẽµA(x) to specify the
quantities in the covariantized version of (3.16), like the reference spin connection,
for which no operator expression can be found within the metric formulation.

Now, a diffeomorphism covariant version of (3.16) can be written in the form

i hκẽẽµA(x)γ A(∂µ + θ̃µ(x))9 + i hκ(
√

gγ µθµ)op9 = Ĥ9 (3.21)

which involves the self-consistent average vielbein fieldẽµA(x) given by the “boot-
strap condition” (3.18), (3.19) and the corresponding spin connectionθ̃µ(x). This
makes the equation essentially nonlinear and integro-differential. However, the
corresponding “nonlocality” is totally confined to the inner space of the metric
components, over which the integration is implied in (3.19), and, therefore, does
not alter the locally causal character of the equation in (a self-consistent, aver-
aged) space–time. At the same time the nonlinearity in the left-hand side of (3.21)
specifies the averaged space–time described by the tilded quantities and does
not alter the quantum dynamics in the inner space, which is governed by the lin-
ear operatorĤ, Eq. (3.13), and, therefore, is consistent with the superposition
principle. Moreover, inasmuch as the tilded quantities present in Eq. (3.21) are
introduced as resulting from the quantum averaging self-consistent with the un-
derlying quantum dynamics of the wave function, they represent not an arbitrary a
priori fixed classical background but an averaged self-consistent space–time geom-
etry which enables us to formulate the Dirac-like equation for the wave function,
as it is characteristic of the precanonical quantization approach. In this sense the
formulation can be viewed as background independent.

The explicit form of the operator part of the spinor connection term in (3.21),
(
√

gγ µθµ)op, can be derived from (3.17). By assuming the “standard” ordering
of operators in an intermediate calculation and replacing, when appropriate, the
bilinear combinations of vielbeins appearing therewith with the metric tensor, we
obtain (√

gγ µθµ
)op = −nπ iGhκ

{√
ghµν

∂

∂hµν

}
ord

. (3.22)

6 To avoid a possible confusion let us notice that the scalar product in (3.19) and the finite dimensional
diiffeomorphism invariant integration measure (3.20) are mathematically well defined, in contrast to
their infinite dimensional counterparts in quantum geometrodynamics based on the Wheeler–DeWitt
equation.
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The x-dependent reference spin connection termθ̃µ(x) in (3.21) is related
to the average self-consistent vielbein fieldẽA

µ (x), given by the “bootstrap condi-
tion” (3.18), (3.19), and a proper coordinate condition, by the classical expression

θ̃ AB
µ (x) = ẽα[ A

(
2∂[µẽB]

α] + ẽB]β ẽC
µ∂β ẽCα

)
(3.23)

which is equivalent to (3.4).
Lastly, let us note that in order to distinguish a physically relevant information

in (3.21) we need to impose a gauge-type condition on9. The meaning of this
condition is to single out a specific wave function9(hµν , xα) from the class of
wave functions which lead to the averaged metric fields which are “physically
equivalent.” For example, if one is to impose the De Donder–Fock harmonic gauge
on the averaged metric field then the correspoding condition on the wave function
reads:

∂µ(〈hµν〉(x)) = 0, (3.24)

where〈hµν〉(x) is given similarly to (3.19) and (3.20).
Thus, we conclude that within precanonical quantization based on DW for-

mulation, the quantized gravity is described by a generally covariant generalized
Schrödinger equation (3.21), with the operatorŝH and (

√
gγ µθµ)op given respec-

tively by (3.13) and (3.22), and the supplementary “bootstrap condition” (3.18)
which specifies the tilded quantities representing the self-consistent average space–
time geometry.

The solutions of these equations,9(gµν , xα), can be interpreted as the prob-
ability amplitudes of finding the values of the components of the metric tensor
in the interval [gµν − (gµν + dgµν)] in an infinitesimal vicinity of the pointxα.
Obviously, this description is very different from the conventional quantum field
theoretical one and its physical significance remains to be explored. It is inter-
esting to note, however, that it opens an intriguing possibility to approximate the
“wave function of the Universe” by the fundamental solution of Eq. (3.21). This
solution is expected to describe an expansion of the wave function from the pri-
mary “probability lump” of the Planck scale and assigns a meaning to the “genesis
of the space–time” in the sense that the observation of the space–time points be-
yond the primary “lump” becomes more and more probable with the spreading
of the wave function. The self-consistency encoded in the “bootstrap condition”
obviously plays a crucial role in this process: in a sense, the wave function itself
determines, or “lays down,” the space–time geometry it is to propagate on.

4. CONCLUDING REMARKS

The problem of quantization of gravity has been treated here from the point of
view of precanonical quantization based on the structures of the De Donder–Weyl
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theory viewed as a manifestly covariant generalization of the Hamiltonian formu-
lation from mechanics to field theory.

The De Donder–Weyl Hamiltonian formulation is an attractive starting point
for quantization of gravity as it does not distinguish between space and time di-
mensions and represents the fields essentially as systemsvarying in space–time
rather than as infinite dimensional systemsevolvingin time. The De Donder–Weyl
Hamiltonian equations (1.1), which are equivalent to the Euler–Lagrange equa-
tions, provide us with the Hamiltonian-like description of this type of varying in
space–time. These equations are formulated using the finite dimensional analogues
of the confuguraion space—the space of field and space–time variables, and the
phase space—the space of field and space–time variables and polymomenta.

The quantum counterpart of the theory is formulated also on a finite dimen-
sional configuration space of field and space–time variables. The corresponding
wave function9(xµ, ya) is naturally interpreted as the probability amplitute of a
field to take a value in the interval [y− (y+ dy)] in the vicinity of the space–time
point x. In doing so all the dependence on a space–time location is transfered
from operators to the wave function, corresponding to what we called the “ultra-
Schrödinger” picture.

It should be noted that despite the finite dimensionality of the constructions
of the precanonical approach no field degrees of freedom, understood in the con-
ventional sense, are ignored. This is evident, on the classical level, from the fact
that the DW Hamiltonian equations are equivalent to the field equations and, on
the quantum level, from the observation that our generalized Schr¨odinger equa-
tion, Eq. (2.6), reproduces the field equations in the classical limit and also can be
related to the standard functional differential Schr¨odinger equation (Kanatchikov,
2000b).

It is clear that the foundations of the present approach to field quantization
are very different from those of the standard quantum field theory. Because of
this conceptual distance it is not easy to establish a connection between both.
Unfortunately, a poor understanding of this issue so far has been hindering specific
applications of the approach (see, however, (Castro, 1998) for a recent attempt to
apply it to quantization ofp-branes).

Nevertheless, the already understood character of connections between the
De Donder–Weyl theory and the standard Hamiltonian formalism (Gotay, 1991a,b;
Goldschmidt and Sternberg, 1973; Sniatycki, 1984; Kijowski and Tulczyjew, 1979;
Paufler and R¨omer, 2001) seems to provide us with a clue to a possible approach
to this problem. In fact, the standard symplectic form and the standard equal-time
canonical brackets in field theory can be obtained by integrating the polysymplec-
tic formÄ and the canonical brackets (2.3) over the Cauchy data surface6: (ya =
ya(x), t = const.) in the covariant configuration space (ya, xµ) (Kanatchikov,
1998a). Similarly, the standard functional differential field theoretic Hamilton
and Hamilton–Jacobi equations can be deduced from the partial differential DW
Hamiltonian and the DW Hamilton–Jacobi equations by restricting the quantities
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of the DW formulation to a Cauchy data surface6 and then integrating over it. It
is natural to expect that a similar connection can be established between the ele-
ments of the precanonical approach to field quantization and those of the standard
canonical quantization.

A related way to find a connection with the conventional quantum field theory
is to view the Schr¨odinger wave functional9([y(x)], t) (see, e.g., Hatfield, 1992) as
a composition of amplitudes given by our wave function9(y, x, t) restricted to6.
In fact, developing an earlier demonstration of this connection in the ultralocal ap-
proximation (Kanatchikov, 1998b,c) we have shown recently (Kanatchikov, 2000b)
that the Schr¨odinger wave functional can be represented as the trace of the pos-
itive frequency part of the continual product over all spacial points of the values
of the wave function9(ya, xµ) restricted to a Cauchy surface. Besides, it has
been shown that using this ansatz the standard functional differential Schr¨odinger
equation can be derived from our Dirac-like generalized Schr¨odinger equation,
Eq. (2.6). It is natural to ask if this kind of interplay between precanonical and
canonical quantization could be extended to gravity in order to understand a possi-
ble relation between the Dirac-like wave equation for quantized gravity proposed
in section 3.2.3 and the Wheeler–DeWitt equation.

The character of the interrelations, as outlined earlier, between the DW for-
mulation (and more general Lepagean theories Dedecker, 1977; Krupka, 1983,
1986, 1987; Lepage, 1941, 1942) and the conventional canonical formalism is the
reason to refer to the former as theprecanonicalformalism. The term reflects an
intermediate position of the DW formulation (and its Lepagean generalizations)
between the covariant Lagrangian and the “instantaneous” Hamiltonian levels of
description. Note that in mechanics,n = 1, the precanonical description coincides
with the canonical one and it is only in field theory,n > 1, that they become
different. The same is valid forprecanonical quantizationunderlying the present
approach to quantization of gravity.

It should be noticed that the application of the precanonical framework to
gravity immediately raises many questions to which no final answers can be given
as yet. Some of these, such as, for example,

(i) how the spinor wave function is reconciled with the boson versus fermion
nature of the fields we quantize;

(ii) if it can or should be replaced with a more general Clifford algebra
valued wave function;

(iii) to what extent one can rely on the prescription of quantum averaging
(2.8) if the underlying scalar product is neither positive definite nor
x-independent;

(iv) how to quantize the operators more general than those entering the pre-
canonical brackets (2.3); and, at last,

(v) how to calculate the observable quantities of interest in field theory using
the precanonical framework,
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concern rather the precanonical approach in general and are still being investigated.
We hope to address them elsewhere. Let us instead concentrate here on a few
questions related to the specific application of precanonical quantization to general
relativity.

A severe difficulty we encountered is related to the nontensorial nature of
the basic quantities (the polymomenta and the DW Hamiltonian) of the DW for-
mulation of general relativity in section 3.2.1, which is in disagreement with the
tensorial character of operators which only can be constructed (in a background
independent fashion) as their quantum counterparts. The origin of this difficulty is
in the fact that the DW formulation of general relativity in section 3.2.1 is based
essentially on the Einstein noncovariant truncated Lagrangian density, which con-
tains no second-order derivatives of the metric, instead of the generally covariant
Einstein–Hilbert Lagrangian density

√
q R. To use the latter we would need a

generalization of the precanonical constructions outlined in sections 2.1 and 2.2
to the second-order irregular Lagrangians (see, e.g., Aldaya, 1978; Gotay, 1991;
Krupka, 1983, 1986, 1987 and the references in Gotay, 1991), which is largely
not developed as yet. The vielbein formulation of general relativity in the second-
order formalism would face a similar difficulty. An attempt to use the first-order
(Palatini) formalism (cf. Espositoet al., 1995; Gotayet al., 1998; Stornaiolo and
Esposito, 1997) also leads to highly irregular Lagrangians which require a proper
adaptation of the precanonical treatment yet to be developed.

In the approach of this paper, the difficulty mentioned earlier is circum-
vented by quantizing locally, in a vicinity of a point, and then covariantizing.
Though this procedure involves external elements, such as a reference vielbein
field ẽµa (x) and the corresponding spin connectionθ̃µ(x) which enter into the gen-
eralized Schr¨odinger equation (3.21) as nonquantized quantities, those are not
arbitrary since the correspondence principle requires the reference vielbein field
to be consistent with the mean value of the metric. This requirement leads to
a self-consistency in the theory in the form of the “bootstrap condition” (3.18)
and (3.19) which connects the bilinear combination of the reference vielbein
fields ẽµa (x) with the quantum mean value of the metric. By this means the al-
lowable classical geometry emerges in the theory as an approximate notion—
a result of quantum averaging—self-consistent with the underlying quantum
dynamics. In this sense the theory appears to be independent of an arbitrarily chosen
background.

This point of view, though looking less radical than the usual denial of any
background geometrical structure in quantum theory of gravity, which is known to
lead to the most of the conceptual difficulties of the latter, seems to offer a working
alternative to the currently more popular attempts to proceed from a postulated
specific model of quantum “pregeometry” near to the Planck scale, be it a discrete
space–time, a space–time foam, a noncommutative or fuzzy space–time, or the
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spin networks and a spin foam recently proposed within the Ashtekar program
(for a review and further references see, e.g., Rovelli, 1998).

On the other hand, the appearance in the left hand side of (3.21) of, essentially,
an averaged Dirac operator, may imply an approximate, “smeared down,” not
ultimately quantum, character of the description achieved here. In this case a
further step could be required which would allow us to treat the Dirac operator in
the left hand side of (3.7) beyond the framework of classical geometry. In this case
a proper insight into a quantum pregeometry could be important indeed.

Let us mention also that the coefficients involvingn in (3.13) and (3.22)
at the present stage cannot be considered as reliably established. This is related
both to the ordering ambiguity and to the unreliability of the results obtained
by formal substitution of polymomenta operators (3.12) to classical expressions
(for example, applying the similar procedure to the DW Hamiltonian of a mass-
less scalar fieldφ yields the operator− n

2h2κ2∂2
φφ instead of the correct one

− 1
2h2κ2∂2

φφ (Kanatchikov, 1998b, 1999a). Note also, that at this stage it is also
rather difficult to choose between the formulation based on the operator of DW
HamiltonianĤ and that based on the corresponding densityĤ. In the former case,
the generalized Schr¨odinger equation, Eq. (3.7), would be modified as follows:
i hκ ̂γ µ∇µ9 = Ĥ9, which in general is different from (3.7) because of the ordering
ambiguity. A preliminary consideration of the toy one-dimensional models corre-
sponding to the formulations usinĝH andĤ respectively indicates (Kanatchikov,
in preparation) that the latter formulation, which leads to a toy model similar to
that discussed long ago by Klauder (1969, 1970, 1980), seem to reveal more in-
teresting behavior and thus might be more suitable. However, to present more
conclusive results, an additional analysis, possibly based on quantization of more
general dynamical variables than those involved in the precanonical brackets (2.3),
is required. Besides, as we have already pointed out, the vielbein formulation of
general relativity can be more adequate to the application of precanonical quanti-
zation to gravity, though it is unlikely to be a panacea from the problems we have
outlined earlier. The corresponding analysis is in progress and we hope to report
on the results elsewhere.

In conclusion, let us summarize in short the potential advantages of the present
approach. The obvious advantage is its manifest covariance (more precisely, the
starting point and the resulting equations are covariant though some intermediate
steps still are not). This allows us to avoid the usual restriction to globally hy-
perbolic space–times which is necessarily imposed in canonical quantum gravity.
However, this advantage, though potentially important for considering the expected
quantum topology and signature changes in quantum gravity, still could be viewed
by a sceptic as a purely technical achievement. Another technical advantage is
that the analogue of the Schr¨odinger equation and other elements of the formal-
ism reveal no problems with their mathematical definition (the ordering problem
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encountered here is, in fact, not more complicated than that in quantum mechanics),
in contrast to the approaches based on the Wheeler–DeWitt equation or the path
integral. This advantage, however, is in-built in the precanonical approach itself,
which avoids treating fields as infinite-dimensional systems, and is not specific to
the quantum gravity.

As far as the physical aspects of the theory are concerned, an intriguing feature
of the approach is the appearance of a self-consistently incorporated averaged
vielbein field in the generalized Schr¨odinger equation (3.21). This enables us to
avoid the direct tackling with the problems of quantum pregeometry, that is, an
ultimate description of “quantum space–time” near to the Planck scale (for a recent
discussion see Isham, 1993, 1997; Isham and Butterfield, 2000), which are usually
viewed to be the central issue of quantum gravity. Nevertheless, in spite of not
giving an insight as to what the quantum space–time, or pregeometry, could be,
the present treatment refers to the classical space–time only as an approximate
notion resulting from the quantum averaging and a self-consistency. No arbitrarily
fixed classical background geometry is been involved. This essentially amounts to
a background independence of the formulation.

Besides, the appearence of a self-consistent vielbein field provides us with
a framework for discussing the problem of emergence of classical space–time in
quantum gravity (for a recent review see, Isham and Butterfield, 1999a). Moreover,
it could shed light on the problem of interpretation (or, that of an “external ob-
server”) in quantum cosmology since the generalized Schr¨odinger equation (3.21)
essentially describes a sort of self-referential quantum system, in the sense that
the self-consistent averaged vielbein field can be viewed as the vielbein field
representing the macroscopic “self-observing” degrees of freedom of a quantum
gravitational system.
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Hélein, F. and Kouneiher, J. (2000). Finite dimensional Hamiltonian formalism for gauge and field
theories (math-ph/0010036).

Hermann, R. (1970).Lie Algebras and Quantum Mechanics, W. A. Benjamin, New York.



P1: VENDOR/FOM/LOV/FNV/GEE/GCQ/GDP

International Journal of Theoretical Physics [ijtp] PP108-299770 March 31, 2001 9:54 Style file version Nov. 19th, 1999

Precanonical Quantum Gravity 1147
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Krupka, D. andŠtěpánková, O. (1983). On the Hamilton form in second order calculus of varia-
tions. In Proceedings of the Meeting “Geometry and Physics,” Florence, Italy, October 1982,
M. Modugno, ed., Pitagora, Bologna, pp. 85–101.
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